basecls.solver.optimizer.lamb 源代码

#!/usr/bin/env python3
# Copyright (c) 2020 Ross Wightman
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
"""LAMB optimizer

References: https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lamb.py
"""
import os
from typing import Iterable, Tuple, Union

import megengine.functional as F
from megengine import Parameter, tensor
from megengine.functional.inplace import _inplace_add_
from megengine.optimizer import Optimizer


[文档]class LAMB(Optimizer): r"""Implements LAMB algorithm. LAMB is proposed in `"Large Batch Optimization for Deep Learning: Training BERT in 76 minutes" <https://arxiv.org/abs/1904.00962>`_. Args: params: iterable of parameters to optimize or dicts defining parameter groups. lr: learning rate. betas: coefficients used for computing running averages of gradient and its square. Default: ``(0.9, 0.999)`` eps: term added to the denominator to improve numerical stability. Default: ``1e-8`` bias_correction: enables bias correction by ``1 - beta ** step``. Default: ``True`` weight_decay: weight decay (L2 penalty). Default: ``0.0`` always_adapt: apply adaptive lr to ``0.0`` weight decay parameter. Default: ``False`` """ def __init__( self, params: Union[Iterable[Parameter], dict], lr: float, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, bias_correction: bool = True, weight_decay: float = 0.0, always_adapt: bool = False, ): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, weight_decay=weight_decay, betas=betas, eps=eps) super().__init__(params, defaults) self.bias_correction = bias_correction self.always_adapt = always_adapt self._disable_type_convert = True def _create_state(self, param_group): for param in param_group["params"]: self._add_state(param, "exp_avg") self._add_state(param, "exp_avg_sq") self._add_state(param, "step", initializer=0.0) def _updates(self, param_group): lr = param_group["lr"] weight_decay = param_group["weight_decay"] eps = param_group["eps"] beta0, beta1 = param_group["betas"] # since `conver_inputs` is disabled for param updates, # scalar should be explicitly tansforred to tensor _lr, _neg_lr = map(tensor, (lr, -lr)) _weight_decay = tensor(weight_decay) _eps = tensor(eps) _beta0, _beta1 = map(tensor, (beta0, beta1)) c1, c05, c0 = map(tensor, (1.0, 0.5, 0.0)) def norm(vec): return F.sum(vec * vec) ** c05 inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0")) if inplace_mode: # reduce device sync c1_sub_beta0, c1_sub_beta1 = map(tensor, (1 - beta0, 1 - beta1)) for param in param_group["params"]: if param.grad is None: continue grad = param.grad states = self._state[param] step, exp_avg, exp_avg_sq = ( states["step"], states["exp_avg"], states["exp_avg_sq"], ) p_norm = norm(param.flatten()) if inplace_mode: _inplace_add_(step, c1, alpha=c1, beta=c1) _inplace_add_(exp_avg, grad, alpha=_beta0, beta=c1_sub_beta0) _inplace_add_(exp_avg_sq, grad * grad, alpha=_beta1, beta=c1_sub_beta1) bias_correction1 = c1 - _beta0 ** step if self.bias_correction else c1 bias_correction2 = c1 - _beta1 ** step if self.bias_correction else c1 delta = (exp_avg / bias_correction1) / ( (exp_avg_sq / bias_correction2) ** c05 + _eps ) if weight_decay != 0.0: _inplace_add_(delta, param, alpha=c1, beta=_weight_decay) d_norm = norm(delta.flatten()) trust_ratio = ( p_norm / d_norm if (self.always_adapt or weight_decay > 0) and p_norm > c0 and d_norm > c0 else c1 ) _inplace_add_(param, delta, alpha=c1, beta=_neg_lr * trust_ratio) continue # step = step + c1 step += c1 # exp_avg = _beta0 * exp_avg + grad * (c1 - _beta0) exp_avg *= _beta0 exp_avg += grad * (c1 - _beta0) # exp_avg_sq = _beta1 * exp_avg_sq + (c1 - _beta1) * (grad * grad) exp_avg_sq *= _beta1 exp_avg_sq += (c1 - _beta1) * (grad * grad) bias_correction1 = c1 - _beta0 ** step if self.bias_correction else c1 bias_correction2 = c1 - _beta1 ** step if self.bias_correction else c1 delta = (exp_avg / bias_correction1) / ((exp_avg_sq / bias_correction2) ** c05 + _eps) if weight_decay != 0.0: delta += param * _weight_decay d_norm = norm(delta.flatten()) trust_ratio = ( p_norm / d_norm if (self.always_adapt or weight_decay > 0) and p_norm > c0 and d_norm > c0 else c1 ) param -= _lr * trust_ratio * delta